Rの考え方

Rの個人研究・考察を行うブログ。最近は因果推論とアナリティクス(機械学習、統計はお休み中)、認知論にお熱。

ブログ

ガンマ関数Γ(n)と階乗(n-1)!の一致を示す

投稿日:2020年6月6日 更新日:

自分の備忘録として、ガンマ関数がなぜ階乗と同値になるのか確認したことを記録する。

ガンマ関数は下記の式で表される。

    \[    \boxed{\Gamma(z)=\int_0^{\infty}{t^{z-1}}{e^{-t}}\,\mathrm{d}t} \]

ただし、自然数nであれば下記のように一般化される。いわゆる階乗だ。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

ただ、導出でよく説明される下記式ではわかりにくい可能性がある。
私もわからなかったが、よく見ると部分積分の上手い使い方である。

    \[    \boxed{    \Gamma(n)=\int_0^{\infty}{t^{n-1}}{e^{-t}}\,\mathrm{d}t    } \]

    \[    \boxed{    =\,[-t^{n-1}e^{-t}]_0^{\infty}-\int_0^{\infty}{\{-(n-1)t^{n-2}e^{-t}\}\mathrm{d}t}    } \]

そして、左辺は0、右辺は下記で表される。

    \[    \boxed{    (n-1)\Gamma(n-1)    } \]

そこにΓ(1) = 1となることを利用して計算してみると、

Γ(2) = 1 = 1!
Γ(3) = 2 = 2!
Γ(4) = 6 = 3!
Γ(5) = 24 = 4!
続く…

となる。

とりあえずこうなることはよくわかった。
ただ、実際の積分について理解が不足していると分かり辛い…。
では実際にz=1から導出してみよう。

使う知識は部分積分のみである。

z=1

    \[    \boxed{    \Gamma(1)=\int_0^{\infty}{t^{0}}{e^{-t}}\,\mathrm{d}t\    } \]

    \[    \boxed{    =\,[-e^{-t}]_0^{\infty}\,=\,(-e^{-\infty})-(-e^{-0})\,=\,1    } \]

左が0、右がeの0乗=1となるので、1になる。

z=2

    \[    \boxed{    \Gamma(2)=\int_0^{\infty}{t^{1}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{1}e^{-t}]_0^{\infty}-\int_0^{\infty}{1t^{0}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(1)の式である。
これを愚直に計算すると、

    \[    \boxed{    =\,-(0-0e^{-0}) - (e^{-\infty}-e^0)\,=\,1    } \]

続いて、

z=3

    \[    \boxed{    \Gamma(3)=\int_0^{\infty}{t^{2}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{2}e^{-t}]_0^{\infty}-\int_0^{\infty}{2t^{1}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(2)の式×2である。
結果は1×2となり、2!と同値となる。

微分の性質から、
z=4であれば、Γ(3)×3=3!

    \[    \boxed{    \int_0^{\infty}{t^{3}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{3}e^{-t}]_0^{\infty}-\int_0^{\infty}{3t^{2}e^{-t}}\/\mathrm{d}t    } \]

z=5であれば、Γ(4)×4=4!と同値となる。

    \[    \boxed{    \int_0^{\infty}{t^{4}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{4}e^{-t}]_0^{\infty}-\int_0^{\infty}{4t^{3}e^{-t}}\/\mathrm{d}t    } \]

そのため、ガンマ関数Γは以下のように表される。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

少しすっきりしました。

-ブログ

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

AIを身近に。あなたと共に。

最近では、「AI(人工知能)で〇〇ができた」というニュースが数多く報道されるようになりました。 私が推察するに、あなたはAIに対して不安を持っていませんか? 何でもできるように報道されることが増えれば …

仕事で出世を目指さなくていいじゃないか。上を向かずに歩くことも大切だ。

会社勤めを始めてから、気になることがある。 「なぜ、仕事ができない彼は手を抜くのか?」 そんなことではどこからも必要とされないのに。 会社でも、破産でもすれば最も被害をこうむるのは、外資でもどこでも行 …

2021年おすすめ書籍11選と書評

前回の書評、コンサルへの転職1年半で読んだ本90冊とその書評より1年少々経過しました。 以前より本の数を減らして書評を記載します。この1年で少なくとも50冊くらいは読んでいるので読書量が減ったわけでは …

転職後1年の記録

これは何? 外資の製薬企業(研究開発などいろいろやってた)から、日系の新興コンサルティング会社(データ系)に転職した人が、転職から1年経過したのでいろいろとまとめてみた。 超長くなった。 目次 ・転職 …

高校野球シミュレーションMeisyo3 オープンβテスト開始

長かった開発期間…6か月(ノД`)・゜・。 3DでMeisyoを新しく実装したMeisyo3をリリースしました。 ゲームコンセプトは以前のブログhttp://rei-farms.jp/blog/blo …