Rの考え方

Rの個人研究・考察を行うブログ。最近は因果推論とアナリティクス(機械学習、統計はお休み中)、認知論にお熱。

ブログ

Google検索があるから勉強しなくていいとは「言えない」理由

投稿日:

検索技術が進歩し、知らないことはググって解決が多くなってきました。
日常生活は便利になりましたが、技術や学問を学ぶ際にはそれは正しいのでしょうか。

結論から言うと、間違っています。
理由としては、未知の専門分野でWebの記述が正しいことを判断できるのか答えてみてください。

具体的にいうと、機械学習の関連技術(特にプログラムのコーディング)は間違った解釈が溢れています。
対して、注目されていない技術は検索であまりヒットしません。

具体例を挙げると、、
注目されている技術を機械学習->決定木モデル->XGBoostとします。
Google検索(日本)で約140万件の記事がヒットします。

注目されていない技術分野を統計的因果推論とします。
約37万件の記事がヒットします。

つまり1つの技術(学問)分野より、機械学習のモデルの一つの方が検索でのヒット数が多い状態です。

深堀りをすると、統計的因果推論の割と有名な1つの手法を検索します。
「統計的因果推論 傾向スコア 層別」とすると1.5万件ヒットします。
さて、この記事数の中で、あなたは正しい記事を見つけることができるのでしょうか。

さらに専門的に、
「direct lingam 統計的因果探索」とすると・・・約900件。
このモデルは因果方向を推定するために回帰分析を複数回行う、簡単でかつ画期的なモノですがWeb上ではほぼ説明がありません。

注目されている技術はゴミ記事にあふれ、注目されていない技術はそもそも記事がない。Webはそんな場所です。

そこであなたは正しさを判断できるでしょうか。

-ブログ

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

新職場で1ヶ月目な件について

れいです。 外資系製薬企業から分析コンサルティング会社に移って1ヶ月が経ちました。 社内で開発も行っているし、AIベンチャーとも言う・・・のか? Deep Learningとか当たり前に使われてるし、 …

チーズはどこへ消えた?飽きは最大の武器だよ。

飽き性で困ったな・・・というあなた。 想像してみてください。 誰もがずっと同じレストランの料理で満足している世界を! 飽きもせず、毎日毎日同じ場所に行ってご飯を食べます。 違和感を感じませんか? つま …

文学作品の読み・聞き放題サービスSaraのリリース

Sara 文学作品の読み・聞き放題ならSara。新しい教養と出会う場所。どこでも、誰でも、自分の好きな時に。 なにができるのか 青空文庫の作品(約16,000作品) ・読み放題 ・聞き放題(機械音声合 …

データ分析の品質をどう定義するか

はじめに 「データ分析って、それ自体にばらつきがあるよね。」という言葉 その通りです。 データ分析は個人の意図が入り込みやすく、担当者によって思考法や手法に再現性が取れないことがままあります。 それを …

ヒトは情報量に不均一性があるとカンタンに仲違いする

あなたには部下が育たない、なぜか人に嫌われるという悩みはありませんか? その原因には、一つ普遍的な事柄があります。 それは、情報量の不均一性です。 簡単に言うと、相手から貰う情報量と、与える情報量が極 …