Rの考え方

Rの個人研究・考察を行うブログ。最近は因果推論とアナリティクス(機械学習、統計はお休み中)、認知論にお熱。

ブログ

ガンマ関数Γ(n)と階乗(n-1)!の一致を示す

投稿日:2020年6月6日 更新日:

自分の備忘録として、ガンマ関数がなぜ階乗と同値になるのか確認したことを記録する。

ガンマ関数は下記の式で表される。

    \[    \boxed{\Gamma(z)=\int_0^{\infty}{t^{z-1}}{e^{-t}}\,\mathrm{d}t} \]

ただし、自然数nであれば下記のように一般化される。いわゆる階乗だ。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

ただ、導出でよく説明される下記式ではわかりにくい可能性がある。
私もわからなかったが、よく見ると部分積分の上手い使い方である。

    \[    \boxed{    \Gamma(n)=\int_0^{\infty}{t^{n-1}}{e^{-t}}\,\mathrm{d}t    } \]

    \[    \boxed{    =\,[-t^{n-1}e^{-t}]_0^{\infty}-\int_0^{\infty}{\{-(n-1)t^{n-2}e^{-t}\}\mathrm{d}t}    } \]

そして、左辺は0、右辺は下記で表される。

    \[    \boxed{    (n-1)\Gamma(n-1)    } \]

そこにΓ(1) = 1となることを利用して計算してみると、

Γ(2) = 1 = 1!
Γ(3) = 2 = 2!
Γ(4) = 6 = 3!
Γ(5) = 24 = 4!
続く…

となる。

とりあえずこうなることはよくわかった。
ただ、実際の積分について理解が不足していると分かり辛い…。
では実際にz=1から導出してみよう。

使う知識は部分積分のみである。

z=1

    \[    \boxed{    \Gamma(1)=\int_0^{\infty}{t^{0}}{e^{-t}}\,\mathrm{d}t\    } \]

    \[    \boxed{    =\,[-e^{-t}]_0^{\infty}\,=\,(-e^{-\infty})-(-e^{-0})\,=\,1    } \]

左が0、右がeの0乗=1となるので、1になる。

z=2

    \[    \boxed{    \Gamma(2)=\int_0^{\infty}{t^{1}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{1}e^{-t}]_0^{\infty}-\int_0^{\infty}{1t^{0}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(1)の式である。
これを愚直に計算すると、

    \[    \boxed{    =\,-(0-0e^{-0}) - (e^{-\infty}-e^0)\,=\,1    } \]

続いて、

z=3

    \[    \boxed{    \Gamma(3)=\int_0^{\infty}{t^{2}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{2}e^{-t}]_0^{\infty}-\int_0^{\infty}{2t^{1}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(2)の式×2である。
結果は1×2となり、2!と同値となる。

微分の性質から、
z=4であれば、Γ(3)×3=3!

    \[    \boxed{    \int_0^{\infty}{t^{3}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{3}e^{-t}]_0^{\infty}-\int_0^{\infty}{3t^{2}e^{-t}}\/\mathrm{d}t    } \]

z=5であれば、Γ(4)×4=4!と同値となる。

    \[    \boxed{    \int_0^{\infty}{t^{4}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{4}e^{-t}]_0^{\infty}-\int_0^{\infty}{4t^{3}e^{-t}}\/\mathrm{d}t    } \]

そのため、ガンマ関数Γは以下のように表される。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

少しすっきりしました。

-ブログ

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

仕事での雑用の割り振りに関する問題

仕事での雑用ってすごく面倒ですよね。 どうにかして雑用を(仕事も!)楽に終わらせたい!! 私もいつも考えています。 今回は雑用の割り振りに関する問題を解いてみましょう。 問題1(仕事をさせてみよう) …

no image

就職活動 選考通過率まとめ

とりあえずこれくらいでしたというののまとめでございます。 ES・書類通過率 20/30 = 66% 筆記試験通過率 8/8 = 100% 適性検査通過率 1/5 = 20% 一次面接通過率 5/18 …

データ分析の品質をどう定義するか

はじめに 「データ分析って、それ自体にばらつきがあるよね。」という言葉 その通りです。 データ分析は個人の意図が入り込みやすく、担当者によって思考法や手法に再現性が取れないことがままあります。 それを …

はじめての転職は怖い。それは当たり前。

転職して2か月が経ったRです。 私は、研究員(製薬会社)からアナリスト(コンサルティング会社)という一見一貫しない転職を行いました。 転職を経験して実際どうだったのか、何が必要なのか書き残しておきます …

環境要因から想定する科学の発展

仮説1:人は「考えている」のではなく、環境要因によって「考えさせられて」いる。 仮説2:「考える総量」と感情・感覚の量は正比例する。 仮説3:その分野(例:食欲、金銭欲等)が満たされている場合、感情・ …