Rの考え方

Rの個人研究・考察を行うブログ。最近は因果推論とアナリティクス(機械学習、統計はお休み中)、認知論にお熱。

ブログ

ガンマ関数Γ(n)と階乗(n-1)!の一致を示す

投稿日:2020年6月6日 更新日:

自分の備忘録として、ガンマ関数がなぜ階乗と同値になるのか確認したことを記録する。

ガンマ関数は下記の式で表される。

    \[    \boxed{\Gamma(z)=\int_0^{\infty}{t^{z-1}}{e^{-t}}\,\mathrm{d}t} \]

ただし、自然数nであれば下記のように一般化される。いわゆる階乗だ。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

ただ、導出でよく説明される下記式ではわかりにくい可能性がある。
私もわからなかったが、よく見ると部分積分の上手い使い方である。

    \[    \boxed{    \Gamma(n)=\int_0^{\infty}{t^{n-1}}{e^{-t}}\,\mathrm{d}t    } \]

    \[    \boxed{    =\,[-t^{n-1}e^{-t}]_0^{\infty}-\int_0^{\infty}{\{-(n-1)t^{n-2}e^{-t}\}\mathrm{d}t}    } \]

そして、左辺は0、右辺は下記で表される。

    \[    \boxed{    (n-1)\Gamma(n-1)    } \]

そこにΓ(1) = 1となることを利用して計算してみると、

Γ(2) = 1 = 1!
Γ(3) = 2 = 2!
Γ(4) = 6 = 3!
Γ(5) = 24 = 4!
続く…

となる。

とりあえずこうなることはよくわかった。
ただ、実際の積分について理解が不足していると分かり辛い…。
では実際にz=1から導出してみよう。

使う知識は部分積分のみである。

z=1

    \[    \boxed{    \Gamma(1)=\int_0^{\infty}{t^{0}}{e^{-t}}\,\mathrm{d}t\    } \]

    \[    \boxed{    =\,[-e^{-t}]_0^{\infty}\,=\,(-e^{-\infty})-(-e^{-0})\,=\,1    } \]

左が0、右がeの0乗=1となるので、1になる。

z=2

    \[    \boxed{    \Gamma(2)=\int_0^{\infty}{t^{1}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{1}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{1}e^{-t}]_0^{\infty}-\int_0^{\infty}{1t^{0}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(1)の式である。
これを愚直に計算すると、

    \[    \boxed{    =\,-(0-0e^{-0}) - (e^{-\infty}-e^0)\,=\,1    } \]

続いて、

z=3

    \[    \boxed{    \Gamma(3)=\int_0^{\infty}{t^{2}}{e^{-t}}\,\mathrm{d}t\,    =\int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    } \]

部分積分の形式にする。

    \[    \boxed{    \int_0^{\infty}{t^{2}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{2}e^{-t}]_0^{\infty}-\int_0^{\infty}{2t^{1}e^{-t}}\/\mathrm{d}t    } \]

右辺右の式をよく見ると、Γ(2)の式×2である。
結果は1×2となり、2!と同値となる。

微分の性質から、
z=4であれば、Γ(3)×3=3!

    \[    \boxed{    \int_0^{\infty}{t^{3}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{3}e^{-t}]_0^{\infty}-\int_0^{\infty}{3t^{2}e^{-t}}\/\mathrm{d}t    } \]

z=5であれば、Γ(4)×4=4!と同値となる。

    \[    \boxed{    \int_0^{\infty}{t^{4}}({e^{-t}})'\,\mathrm{d}t    =\,[-t^{4}e^{-t}]_0^{\infty}-\int_0^{\infty}{4t^{3}e^{-t}}\/\mathrm{d}t    } \]

そのため、ガンマ関数Γは以下のように表される。

    \[    \boxed{\Gamma(n)=(n-1)!} \]

少しすっきりしました。

-ブログ

執筆者:


comment

メールアドレスが公開されることはありません。

関連記事

no image

指示待ち人間の作り方

「指示待ち人間ばかりで困る」と思いませんか? さて、それをどう解決するのか。 まずは、考えを変えてみましょう。 「自分の頭で考える人間を作る」というと難しそうに聞こえます。実際難しいと思います。 「指 …

AIを身近に。あなたと共に。

最近では、「AI(人工知能)で〇〇ができた」というニュースが数多く報道されるようになりました。 私が推察するに、あなたはAIに対して不安を持っていませんか? 何でもできるように報道されることが増えれば …

時間と情報管理

一記事約1,000名の方に見ていただいています。 ありがたいと思います。 前々回の記事URL?では少しスタンスが違ったのは、ある人の依頼で記事を書いたからだ。 いわゆる実験記事である。 いかにコンバー …

褒める方法(心理学者と経営者の比較)

心理学者の場合 若手社員を「褒めて育てる」のが逆効果になる3パターン Aさん「いつまで経っても従業員、特に若手たちのたくましさが感じられないんです。褒められると本当に自信になるんですか?」 回答: 褒 …

今後の開発方針について

CoVision:動物見守りアプリをアップデートしました。 個体認識機能がついて、行動ログを確認できるようになりました。 ここから、広告を出しつつ、ユーザーテストを繰り返していく予定です。 やりたいこ …